Academic Calendar for the Session 2021-2022 B.Sc. Semester-I (Honours) (CBCS)

Name of Faculty	Topic (From 1st October 2021 to		Topic (From 1st October 2021 to 24th February
Members	24 th February 2022)		2022)
	C1 (H) Unit-IV: Differential		C1(H)Unit-IV: Differential Equation
	Equation		Exact differential equations and integrating
	Differential equations and		factors. Separable equations and equations
	mathematical models.		reducible to this form, linear equation and
	General, particular, explicit,	-	Bernoulli equations, special integrating factors
D 0.15	implicit and singular solutions	\mathbf{P}	and transformations.
Dr. S. Manna	of a differential equation.		
Associate Professor	GE-1 Unit-IV: Differential	\mathbf{U}	GE-1Unit-IV: Differential Equation
Head of The	Equation Equation		Exact differential equations and integrating
Department	Differential equations and	\mathbf{J}	factors. Separable equations and equations
		•	
	mathematical models.	\mathbf{A}	reducible to this form, linear equation and
	General, particular, explicit,	1 1	Bernoulli equations, special integrating factors
	implicit and singular solutions		and transformations.
	of a differential equation.		
	C1(H) Unit-I:		C1(H) Unit-I: Calculus
	Calculus		
	Hyperbolic functions,		Curve tracing in Cartesian coordinates,
	higher order derivatives,		tracing in polar coordinates of standard
		▼ 7	curves, L'Hospital's rule, applications in
		$ \mathbf{V} $	business, economics and life sciences.
		A	
	C2(H) Unit-I: Algebra	A	C2(H)Unit-I: Algebra
	Polar representation of	\mathbf{C}	Theory of equations: Descartes rule of signs,
Sri. S. Sarkar	complex numbers, nth roots of		cubic and biquadratic equation.
Assistant Professor	unity, De Moivre's theorem	\mathbf{A}	Inequality: The inequality involving AM≥ GM≥
	for rational indices and its		HM, Cauchy-Schwartz inequality. Theory of
	applications.	\mathbf{T}	equations: Relation between roots and
	аррисанонз.		coefficients, transformation of equation.
	GE-I Unit-I: Calculus	I	GE-I Unit-I: Calculus Curve tracing
	Hyperbolic functions, higher	_	in Cartesian coordinates, tracing polar
	order derivatives, Leibnitz rule	\mathbf{O}	
	,		Coordinates of standard curves, L'Hospital's
	and its applications to	N	rule, applications in business, economics and life
	problems of type e ^{ax+b} sinx,		sciences.
	$e^{ax+b}\cos x$, $(ax+b)^n\sin x$,		
	(ax+b) ⁿ cosx, concavity and		
	inflection points, envelopes,		
	asymptotes.		
	C1(H) Unit-II: Calculus		C1(H) Unit-II: Calculus
	Reduction formulae,		Parametric equations, parameterizing a curve.
	derivations and illustrations of		Arc length of a curve, arc length of parametric
	reduction formulae of the type		curves, area under a curve, area and volume of
	∫ sinnxdx, ∫ cosnxdx,		surface of revolution, techniques of sketching
	\int tannxdx, \int sec nxdx, \int (log x) ⁿ		conics.
	dx , $\int \sin^n x \sin^m x dx$,		
	, John 110111 110111,	l .	

Sri. A. De Assistant Professor	C2(H) Unit-III: Algebra Systems of linear equations, row reduction and echelon forms, vector equations, the matrix equation Ax=b, solution sets of linear systems, applications of linear systems, linear independence.	Introduction to linear transformations, matrix of a linear transformation, inverse of a matrix, characterizations of invertible matrices. Subspaces of Rn, dimension of subspaces of Rn, rank of a matrix, Eigen values, eigen vectors and characteristic equation of a matrix. Cayley-Hamilton theorem and its use in finding the inverse of a matrix.
	GE-1Unit-III:Geometry Reflection properties of conics, rotation of axes and second degree equations, classification of conics using the discriminant, polar equations of conics.	T GE-1Unit-III:Geometry Spheres. Cylindrical surfaces. Central conicoids, paraboloids.Plane sections of conicoids, generating lines, classification of quadrics, illustrations of graphing standard quadric surfaces like cone, ellipsoid.
	C1(H)Unit-III: Geometry Reflection properties of conics, rotation of axes and second degree equations, classification of conics using the discriminant, polar equations of conics.	C1(H) Unit-III: Geometry Spheres. Cylindrical surfaces. Central conicoids, paraboloids.Plane sections of conicoids, generating lines, classification of quadrics, illustrations of graphing Standard quadric surfaces like cone, ellipsoid.
Sri. S. Roy Assistant Professor	C2 (H) Unit-II: Algebra Equivalence relations. Functions, composition of functions, Invertible functions, one to one correspondence and cardinality of a set.	C2(H) Unit-II: Algebra Well-ordering property of positive integers, division algorithm, divisibility and Euclidean algorithm. Congruence relation between integers. Principles of Mathematical induction, statement of Fundamental Theorem of Arithmetic.
	GE-I Unit-II: Calculus Reduction formulae, derivations and illustrations of reduction formulae of the type $\int sinnxdx, \int cosnxdx,$ $\int tannxdx, \int sec nxdx, \int (\log x)^n dx,$ $\int sin^n x sin^m x dx,$	GE-I Unit-II: Calculus Parametric equations, parameterizing a curve. Arc length of a curve, arc length of parametric curves, area under a curve, area and volume of surface of revolution, techniques of sketching conics.
		Internal Assessment: 1st week of December 2021 PTM(online)-2nd week of December 2021 Students' Seminar(online)-2nd week of January 2022

Academic Calendar for the Session 2021-2022 B.Sc. Semester-II (Honours) (CBCS)

Name of the Faculty Members	Topics (From 1st April 2022 to 9th August 2022)
	C3(H)Unit-I: Real Analysis
	Review of algebraic and order properties of R, ε-
	neighborhood of a point in R. Idea of countable sets,
	uncountable sets and uncountability of R. Bounded above
	sets, bounded below sets, bounded sets, unbounded sets.
	Suprema and infima. Completeness property of R and its
	equivalent properties. The Archimedean property, density of
	rational (and Irrational) numbers in R, intervals. Limit points
	of a set, isolated points, open set, closed set, derived set,
Sri. S. Sarkar	illustrations of Bolzano-Weierstrass theorem for sets,
Assistant Professor	compact Sets in R, Heine-Borel Theorem.
Head of The Department	
	C3(H)Unit-II: Real Analysis
	Sequences, bounded sequence, convergent sequence, limit of
	a sequence, lim inf, lim sup. Limit theorems. Monotone
	sequences, monotone convergence theorem. Subsequences,
	divergence criteria. Monotone subsequence theorem
	(statement only), Bolzano Weierstrass theorem for sequences.
	Cauchy sequence, Cauchy's convergence criterion.
	C3(H)Unit-III: Real Analysis
	Infinite series, convergence and divergence of infinite series,
	Cauchy criterion, tests for convergence: comparison test, limit
	comparison test, ratio test, Cauchy's nth root test, integral test.
	Alternating series, Leibniz test. Absolute and conditional
	convergence.
	GE-2Unit-I:Algebra
	Polar representation of complex numbers, nth roots of unity,
	De Moivre's theorem for rational indices and its applications.
	Theory of equations: Relation between roots and coefficients,
	transformation of equation, Descartes rule of signs, cubic and
	biquadratic equation.
	Inequality: The inequality involving AM\geq GM\geq HM, Cauchy-
	Schwartz inequality.

Sri. A. De Assistant professor	C4(H)Unit-IV: Vector Calculus Triple product, introduction to vector functions, operations with vector-valued functions, limits and continuity of vector functions, differentiation and integration of vector functions. GE-2Unit-III: Algebra Systems of linear equations, row reduction and echelon forms, vector equations, the matrix equation Ax=b, solution sets of linear systems, applications of linear systems, linear independence. GE-2Unit-IV:Algebra Introduction to linear transformations, matrix of a linear transformation, inverse of a matrix, characterizations of invertible matrices. Subspaces of Rn, dimension of subspaces of Rn, rank of a matrix, Eigen values, eigen vectors and characteristic equation of a matrix. Cayley-Hamilton theorem and its use in finding the inverse of a matrix.
	C4(H)Unit-I:DifferentialEquations Lipschitz condition and Picard's Theorem (Statement only). General solution of homogeneous equation of second order,
Sri. S. Roy Assistant Professor	principle of super position for homogeneous equation, Wronskian: its properties and applications, Linear homogeneous and non- homogeneous equations of higher order with constant coefficients, Euler's equation, method of Undetermined coefficients, method of variation of parameters. C4(H)Unit-II: Differential Equations Systems of linear differential equations, types of linear systems, differential operators, an operator method for linear systems with constant coefficients, Basic Theory of linear systems in normal form, homogeneous linear systems with constant coefficients: Two Equations in two unknown functions. C4(H)Unit-III: Differential Equations Equilibrium points, Interpretation of the phase plane Power Series solution of a differential equation bout an ordinary point, solution about a regular singular point. GE-2Unit-II:Algebra Equivalence relations. Functions, composition of functions, Invertible functions, one to one correspondence and cardinality of a set. Well-ordering property of positive integers, division algorithm, divisibility and Euclidean algorithm. Congruence relation between integers. Principles of Mathematical induction, statement of Fundamental Theorem of Arithmetic. Internal Assessment: 2 nd Week of June 2022
	PTM(online)-3 rd Week of June 2022

Academic Calendar for the Session 2021-2022 B.Sc. Semester-III (Honours) (CBCS)

Name of the Faculty Members	Topics (From 1st October 2021 to 5th February 2022)	P	Topics (From 1st October 2021 to 5th February 2022)
Dr. S. Manna Associate Professor Head Of The Department	SEC-1(H):Logic and Sets:- Unit 1 Introduction, propositions, truth table, negation, conjunction and disjunction. Implications, biconditional propositions, converse, contra positive and inverse propositions and precedence of logical operators. Propositional equivalence: Logical equivalences. Predicates and quantifiers: Introduction, quantifiers, binding variables and negations. C7(H): Numerical Methods:- Unit 1 Algorithms. Convergence .Errors: relative, absolute. Round off. Truncation. Bisection method, Newton's method, secant method, Regula-falsi method, fixed point iteration, Newton-Raphson method Rate of convergence of these methods.	U J A V A C A T I O N	SEC-1(H):Logic and Sets:- Unit 2 Sets, subsets, set operations and the laws of set theory and Venn diagrams. Examples of finite and infinite sets. Finite sets and counting principal. Empty set, properties of empty set. Standard set operations. Classes of sets. Power set of a set. Unit 3 Difference and Symmetric difference of two sets. Set identities, generalized union and intersections. Relation: Product set. Composition of relations, types of relations, partitions, equivalence Relations with example of congruence modulo relation. Partial ordering relations, n- ary relations. C7(H): Numerical Methods:- Unit 3 System of linear algebraic equations: Gaussian Elimination and Gauss Jordan methods. Gauss Jacobi method, Gauss Seidel Unit 4 Interpolation: Lagrange and Newton's methods. Error bounds. Finite difference operators. Gregory Forward and backward difference interpolation. Numerical differentiation: Methods based on interpolations, methods based on finite differences. Unit 5 Numerical Integration: Newton Cotes formula, Trapezoidal rule, Simpson's 1/3 rd rule, Gauss quadrature formula. The algebraic eigen Value problem: Power method. Approximation: Least square Polynomial approximation. Euler's method, the modified Euler method, Runge-Kutta Methods of orders two and four.

Sri. A. De Assistant Professor	C6(H):Group Theory:- Unit 1 Symmetries of a square, dihedral groups, definition and examples of groups including permutation groups and quaternion groups (through matrices), elementary properties of groups. Unit 2 Subgroups and examples of subgroups, centralizer, normalizer, center of a group, product of two subgroups.	P U J	C6(H):Group Theory:- Unit 3 Properties of cyclic groups, classification of sub groups of cyclic groups. Cycle notation for permutations, properties of permutations, even and odd permutations, alternating group, properties of cosets, Lagrange's theorem and consequences including Fermat's Little theorem. Unit 4 External direct product of a finite number of groups, normal subgroups, factor groups, Cauchy's theorem for finite abelian groups. Unit 5 Group homomorphisms, properties of homomorphisms, Cayley's theorem, properties of isomorphisms. First, Second and Third isomorphism theorems.
Sri. S. Roy Assistant Professor	C5(H):Theory of Real Functions: Unit 1 Limits of functions(ε-δ approach), sequential criterion for limits, divergence criteria. Limit theorems, one sided limits. Infinite limits and limits at infinity. Continuous functions, sequential criterion for continuity and discontinuity. Algebra of continuous functions. Continuous functions on an interval, intermediate value theorem, location of roots theorem, preservation of intervals theorem. Uniform continuity, non-uniform continuity criteria, uniform continuity theorem.	•	C5(H):Theory of Real Functions: Unit 2 Differentiability of a function at a point and in an interval, Caratheodory's theorem, algebra of differentiable functions. Relative extrema, interior extremum theorem. Rolle's theorem. Mean value theorem, intermediate value property of derivatives, Darboux's theorem. Applications of mean value theorem to inequalities and approximation of polynomials. Unit 3 Cauchy's mean value theorem. Taylor's theorem with Lagrange's form of remainder, Taylor's theorem with Cauchy's form of remainder, Application of Taylor's theorem to convex functions, relative extrema. Taylor's series and Maclaurin's series expansions of exponential and trigonometric functions, ln(1+ x), 1/(ax + b) and(x+1)n. Application of Taylor's theorem to inequalities. Introduction to Metric Space: Unit 4 Metric spaces: Definition and examples. Open and closed balls, neighborhood, open set, interior of a set. Limit point of a set, closed set, diameter of a set, subspaces, dense sets, separable spaces. PTM(online)-2 nd week of December 2021 Internal Assessment: 2 nd week of December 2021 Students' Seminar(online)-2 nd week of January 2022

Academic Calendar for the Session 2021-2022 B.Sc. Semester-IV (Honours) (CBCS)

Name of the Faculty Members	Topics(From 15 th March 2022 to 25 th June 2022)
racuity ividinocis	SEC-2(H):Graph Theory
	 Unit 1 Definition, examples and basic properties of graphs, pseudo graphs, complete graphs, bipartite graphs isomorphism of graphs. Unit 2
Dr. S. Manna Associate Professor Head of The Department	Eulerian circuits, Eulerian graph, semi-Eulerian graph, theorems, Hamiltonian cycles, theorems Representation of a graph by matrix, the adjacency matrix, incidence matrix, weighted graph,
	Unit 3 Travelling salesman's problem, shortest path, Tree and their properties, spanning tree, Dijkstra's algorithm, Warshall algorithm.
	C8(H):Riemann Integration and Series of
	Function Unit 1
	Riemann integration: inequalities of upper and lower sums, Darbaux integration, Darbaux theorem, Riemann conditions of integrability, Riemann sum and definition of Riemann integral through Riemann sums, equivalence of two definitions. Riemann integrability of monotone and continuous functions, properties of the Riemann integral; definition and integrability of piecewise continuous and monotone functions.
	Intermediate Value theorem for Integrals; Fundamental theorem of Integral Calculus.
Sri. S. Sarkar Assistant Professor	Unit 2 Improper integrals. Convergence of Beta and Gamma functions. Unit 3
	Pointwise and uniform convergence of sequence of functions. Theorems on continuity, derivability and integrability of the limit function of a sequence of functions. Series of functions; Theorems on the continuity and derivability of the sum function of a series of functions; Cauchy criterion for uniform convergence and Weierstrass M-Test. Unit 4
	Fourier series: Definition of Fourier coefficients and series, Reimann Lebesgue lemma, Bessel's inequality, Parseval's identity, Dirichlet's condition .Examples of Fourier expansions and summation results for series. Unit 5
	Powerseries, radius of convergence, Cauchy Hadamard theorem. Differentiation and integration of power series; Abel's theorem; Weierstrass approximation theorem.

C9(H):Multivariate Calculus Unit 1

Functions of several variables, limit and continuity of functions of two or more variables Partial differentiation, total differentiability and differentiability, sufficient condition for differentiability. Chain rule for one and two independent parameters, directional derivatives, the gradient, maximal and normal property of the gradient, tangent planes, Extrema of functions of two variables, method of Lagrange multipliers, constrained optimization problems

Unit 2

Sri. A. De Assistant professor

Double integration over rectangular region, double integration over non-rectangular region, Double integrals in polar co-ordinates, Triple integrals, triple integral over a parallelepiped and solid regions. Volume by triple integrals, cylindrical and spherical co- ordinates. Change of variables in double integrals and triple integrals.

Unit 3

Definition of vector field, divergence and curl.

Line integrals, applications of line integrals: mass and work. Fundamental theorem for line integrals, conservative vector fields, independence of path.

Unit 4

Green's theorem, surface integrals, integrals over parametrically defined surfaces. Stoke's theorem, The Divergence theorem.

C10(H):Ring Theory and Linear Algebra

Unit 1

Definition and examples of rings, properties of rings, subrings, integral domains and fields, characteristic of a ring. Ideal, ideal generated by a subset of a ring, factor rings, operations on ideals, prime and maximal ideals.

Unit 2

Ring homomorphisms, properties of ring homomorphisms. Isomorphism theorems I, II and III, field of quotients.

Sri. S. Roy Assistant Professor

Unit 3

Vector spaces, subspaces, algebra of subspaces, quotient spaces, linear combination of vectors, linear span, linear independence, basis and dimension, dimension of subspaces.

Unit 4

Linear transformations, null space, range, rank and nullity of a linear transformation, matrix representation of a linear transformation, algebra of linear transformations. Isomorphisms. Isomorphism theorems, invertibility and isomorphisms, change of coordinate matrix.

Internal Assessment: 3rd Week of May 2022 PTM(online)-2nd Week of May 2022

Academic Calendar for the Session 2021-2022 B.Sc. Semester-V (Honours) (CBCS)

Name of the Faculty Members	Topic(14 th September 2021 to 18 th January 2022)		Topic(14 th September 2021 to 18 th January 2022)
Dr. S. Manna Associate Professor Head Of The Department	DSE-1(H):Linear Programming Unit 1 Introduction to linear programming problem. Theory of simplex method, graphical solution, convex sets, optimality and unboundedness, the simplex algorithm, simplex method in tableau format, introduction to artificial variables,		DSE-1(H):Linear Programming Unit 3 Game theory: formulation of two person zero sum games, solving two person zero sum games, games with mixed strategies, graphical solution procedure, linear programming solution of games.
	problem and its mathematical formulation ,Northwest-Corner method, least cost Method and Vogel approximation method for determination of starting basic solution, algorithm for solving transportation problem, assignment problem and its mathematical formulation, Hungarian method for solving assignment problem.	V A	DCE 2/ID-Drobobility and
Sri. S. Sarkar Assistant Professor	Unit 1 Sample space, probability axioms, real random variables(discrete and continuous), cumulative Distribution function, probability mass/density functions, mathematical expectation, moments, Moment generating function, characteristic function, discrete distributions: uniform, binomial, Poisson, geometric, negative binomial, continuous distributions: uniform, normal, exponential. Unit 2 Joint cumulative distribution function and its properties, joint probability density functions, Marginal and conditional distributions, Expectation of function of two random variables, Conditional expectations, independent random variables, bivariate normal distribution, Correlation coefficient, joint moment generating function(jmgf)and calculation of covariance (from jmgf),linear regression for two variables.	C A T I O N	Statistics Unit 3 Chebyshev's inequality, Statement and interpretation of (weak)law of large numbers and strong law of large numbers. Central limit theorem for independent and identically distributed random variables with finite variance ,Markov chains, Chapman-Kolmogorov equations, classification of states. Unit 4 Random Samples, Sampling Distributions, Estimation of parameters, Testing of hypothesis.

	CHA/II) C FFI YY	1	C1A(TT) C TT
Sri. A. De Assistant Professor	C12(H):Group Theory II Unit 1 Automorphism, inner automorphism, Automorphism groups, automorphism groups of finite and infinite cyclic groups, applications of factor groups to automorphism groups, Characteristic subgroups, Commutator subgroup and its properties. Unit 2 Properties of external direct products, the group of units modulo n as an external direct product, internal direct products, Fundamental theorem of finite abelian groups		C12(H):Group Theory II Unit 4 Groups acting on themselves by conjugation, class equation and consequences, conjugacy in Sn, p-groups, Sylow's theorems and consequences, Cauchy's theorem, Simplicity of An for $n \ge 5$, non- simplicity tests.
	finite abelian groups. Unit 3 Group actions, stabilizers and kernels, permutation representation associated with a given group action. Applications of group actions. Generalized Cayley's theorem. Index theorem.	P U J	
Sri. S. Roy Assistant Professor	C11(H):Partial Differential Equations& Applications Unit 1 Partial differential equations —Basic concepts and definitions. Mathematical problems. First-order equations: classification, construction and geometrical interpretation. Method of Characteristics for obtaining general solution of quasilinear equations. Canonical forms of first-order linear equations. Method of separation of variables for solving first order partial differential equations. Unit 2 Derivation of heat equation, wave equation and Laplace equation. Classification of second order Linear equations as hyperbolic, parabolic or elliptic. Reduction of second order linear equations to canonical forms. Unit 3 The Cauchy problem, Cauchy-Kowalewskaya theorem, Cauchy problem of an infinite string. Initial boundary value problems. Semi-infinite string with a fixed end, semi-infinite string with a free end. Equations with non-homogeneous Boundary conditions. Non- homogeneous wave equation.		C11(H):Partial Differential Equations & Applications Unit 3 Method of separation of variables, solving the vibrating string problem. Solving the heat conduction problem Unit 4 Central force. Constrained motion, varying mass, tangent and normal components of acceleration, modelling ballistics and Planetary motion, Kepler's Second law.
		E I E S	PTM(online)-2 nd week of December 2021 Internal Assessment: 2 nd week of December 2021 Students' Seminar(online)-2 nd Week of January 2022

Academic Calendar for the Session 2021-2022 B.Sc. Semester-VI (Honours) (CBCS)

Name of the	Topics(From 21st February 2022 to 10th June 2022)
Faculty Members	C42/W 75 4 4 G
	C13(H):Metric Spaces
	Unit 1
	Metric spaces: sequences in metrics paces, Cauchy sequences. Complete metric spaces, Cantor's theorem.
	Unit 2 Continuous mappings, sequential criterion and other characterizations of
	continuity. Uniform continuity. Connectedness, connected subsets of R. Compactness: Sequential compactness, Heine-Borel property, totally bounded spaces, finite intersection property, and continuous functions on compact sets. Homeomorphism. Contraction mappings. Banach fixed point theorem and its application to ordinary differential equation.
Sri. S. Sarkar Assistant Professor	DSE-4:Mathematical Modelling Unit 1 Power series solution of Bessel's equation and Legendre's equation,
	Laplace transform and inverse transform, application to initial value problem up to second order.
	Unit 2 Manta Carla simulation madellings simulating deterministic behavior
	Monte Carlo simulation modelling: simulating deterministic behavior (area under a curve, volume under a surface), generating random numbers: middle square method, linear congruence, queuing models: harbor system, morning rush hour, Over view of optimization modelling. Linear programming model: geometric solution algebraic solution, simplex method, sensitivity analysis

C13(H):Complex Analysis

Unit 3

Limits, limits involving the point at infinity, continuity. Properties of complex numbers, regions in the complex plane, functions of complex variable, mappings.

Derivatives, differentiation formulas, Cauchy-Riemann equations, sufficient conditions for differentiability.

Unit 4

Sri. A. De Assistant professor

Analytic functions, examples of analytic functions, exponential function, logarithmic function, trigonometric function, derivatives of functions, and definite integrals of functions. Contours, Contour integrals and its examples, upper bounds for moduli of contour integrals. Cauchy-Goursat theorem, Cauchy integral formula.

Unit 5

Liouville's theorem and the fundamental theorem of algebra. Convergence of sequences and series, Taylor series and its examples.

Unit 6

Laurent series and its examples, absolute and uniform convergence of power series.

C14(H):Ring Theory and Linear Algebra II

Unit 1

Polynomial rings over commutative rings, division algorithm and consequences, principal ideal domains, factorization of polynomials, reducibility tests, irreducibility tests, Eisenstein criterion, and unique factorization in Z [x]. Divisibility in integral domains, irreducible, primes, unique factorization domains, Euclidean domains.

Unit 2

Sri. S. Roy Assistant Professor

Dual spaces, dual basis, double dual, transpose of a linear transformation and its matrix in the dual basis, annihilators. Eigen spaces of a linear operator, diagonalizability, invariant subspaces and Cayley-Hamilton theorem, the minimal polynomial for a linear operator, canonical forms.

Unit 3

Inner product spaces and norms, Gram-Schmidt orthogonalisation process, orthogonal complements, Bessel's inequality, the adjoint of a linear operator. Least squares approximation, minimal solutions to systems of linear equations. Normal and self-adjoint operators. Orthogonal projections and Spectral theorem.

DSE-3(H):Number Theory Unit 1

Linear Diophantine equation, prime counting function, statement of prime number theorem, Goldbach conjecture, linear congruences, complete set of residues. Chinese remainder theorem, Fermat's little theorem, Wilson's theorem.

Unit 2

Number theoretic functions, sum and number of divisors, totally multiplicative functions, definition and properties of the Dirichlet product, the Mobius Inversion formula, the greatest integer function, Euler'sphi-function, Euler'stheorem, reduced set of residues, some properties of Euler's phi-function.

Unit 3

Order of an integer modulo n, primitive roots for primes, composite numbers having primitive roots, Euler's criterion, the Legendre symbol and its properties, quadratic reciprocity, quadratic congruences with composite moduli. Public key encryption, RSA encryption and decryption, the equation x2 + y2 = z2, Fermat's Last theorem.

Internal Assessment: 1st Week of May 2022 PTM(online)-2nd Week of May 2022

Academic Calendar for the Session 2021-2022 B.Sc. Semester-I (General) (CBCS)

Name of Faculty Members	Topic (From 1st October 2021 to 24th February 2022)	P	Topic (From 1 st October 2021 to 24 th February 2022)
Sri. A. De Assistant Professor	DSC-1A(CC-1):Differential Calculus Limit and Continuity (ε and δ definition), Types of discontinuities, Differentiability of functions,	U J A V	DSC-1A(CC-1): Differentia Calculus Successive differentiation, Leibnitz's theorem, Partial differentiation, Euler's theorem on homogeneous functions. Tangents and normals, Curvature, Asymptotes, Singular points, Tracing of curves.
Sri. S. Roy Assistant Professor	DSC-1A(CC-1):Differential Calculus Parametric representation of curves and tracing of parametric curves, Polar coordinates and tracing of curves in polar coordinates.	C A T I O N	DSC-1A(CC-1)Differential Calculus Rolle's theorem, Mean Value theorems, Lagrange and cauchy theorems. Taylor's theorem with Lagrange's and Cauchy's forms of remainder, Power series and its convergences. Taylor's series, Maclaurin's series of sin x, cos x, ex, log(l+x), (l+x)m, Maxima and Minima, Indeterminate forms.
		11	Internal Assessment: 2 nd week of December 2021 PTM(online)-2 nd week of December 2021 Students' Seminar(online)-2 nd week of January 2022

Academic Calendar for the Session 2021-2022 B.Sc. Semester-II (General) (CBCS)

Name of the Faculty Members	Topics (From 26 th April 2021 to 31 th August 2021)		
Sri. S. Roy Assistant Professor	DSC-1B(CC-2):Differential Equations First order exact differential equations. Integrating factors, rules to find an integrating factor. First order higher degree Equations solvable for x,y,p. Methods for solving higher-order differential equations. Basic theory of linear differential equations, Wronskian, and its properties. Solving A differential equation by reducing its order. Linear Homogenous equations with constant coefficients, Linear non-homogenous equations, The method of variation of parameters, The Cauchy-Euler equation, Simultaneous Differential equations, Total differential equations. Order and degree of partial differential equations, Concept of linear and non-linear partial differential equations, Formation of first order partial differential equations, Linear partial differential equation of first order, Lagrange's method, Charpit's method. Classification of second order partial differential equations into elliptic, parabolic and hyperbolic through illustrations only. Assessment: 3 rd Week of June 2022		
PTM(online)-3 rd Week of June 2022			

Academic Calendar for the Session 2021-2022 B.Sc. Semester-III (General) (CBCS)

Name of Faculty Members	Topics (From 1 st October 2021 to 5 th February 2022)		Topics (From 1st October 2021 to 5th February 2022)
Sri. S. Sarkar Assistant professor	DSC-1C(G):Real Analysis Finite and infinite sets, examples of countable and uncountable sets. Real line, bounded sets, suprema and infima, completeness property of R, Archimedean property of R, intervals. Concept of cluster points and statement of Bolzano- Weierstrass theorem.	P U J A	DSC-1C(G): Real Analysis Real Sequence, Bounded sequence, Cauchy convergence criterion for sequences. Cauchy's theorem on limits, order preservation and squeeze theorem monotone sequences and their convergence (monotone convergence theorem without proof). Infinite series. Cauchy convergence criterion for series, positive term series, geometric series, comparison test, convergence of p-series, Root test, Ratio test, alternating series, Leibnitz's test (Tests of Convergence without proof). Definition and examples of absolute and conditional Convergence Series. Sequences and series of functions, Pointwise and uniform convergence. μ-test, M-test, Statements of the results about uniform convergence and integrability and differentiability of functions, Power series and radius of convergence.
Sri. A. De Assistant professor	SEC-I(G):Theory of Equations General properties of polynomials, Graphical representation of polynomials, maximum and minimum values of a polynomial,		SEC-I(G):Theory of Equations General properties of equations, Descarte's rule of signs positive and negative rule, Relation between the roots and the coefficients of equations. Symmetric functions, Applications of symmetric function of the roots.Transformation of equations. Solutions of reciprocal and binomial equations. Algebraic solutions of the cubic and biquadratic equations. Properties of the derived functions. PTM(online)-2 nd week of December 2021 Internal Assessment: 3 rd week of December 2021 Students' Seminar(online)-2 nd week of January 2022

Academic Calendar for the Session 2021-2022 B.Sc. Semester-IV (General) (CBCS)

Name of the Faculty Members	Topics(From 15 th March 2022 to 25 th June 2022)			
	SEC-2(G):Integral Calculus			
Dr. S. Manna Associate Professor Head Of The Department	Integration by Partial fractions, integration of rational and irrational functions. Properties of definite integrals. Reduction formulae for integrals of rational, trigonometric, exponential and logarithmic functions and of their combinations. Evaluation of areas and lengths of curves in the plane, valuation of volumes and surfaces of solids of revolution. Double and Triple integrals.			
	DSC-1D:Algebra			
Sri. A. De Assistant professor	Definition and examples of groups, examples of abelian and non-abelian groups, the group Zn of integers under addition modulo n and the group U(n) of units under multiplication modulo n. Cyclic groups from number systems, complex roots of unity, circle group, the general linear group GLn(R), groups of symmetries of (i) an isosceles triangle, (ii) an equilateral triangle, (iii) a rectangle, and (iv) a square, the permutation group Sym (n), Group of quaternions. Subgroups, cyclic subgroups, the concept of a subgroup generated by a subset and the commutator sub group of group, examples of subgroups including the center of a group. Cosets, Index of subgroups their definition, examples, and characterizations, Quotient groups. Definition and examples of rings, examples of commutative and non-commutative rings: rings from number systems, Zn the ring of integers modulo n, ring of real quaternions, rings of matrices, polynomial rings, and rings of continuous functions. Subrings and ideals, Integral domains and fields, examples of fields: Zp, Q, R, and C. Field of rational functions.			
Internal Assessment: 4th Week of May 2022				
PTM(online)-2 nd Week of May 2022				

Academic Calendar for the Session 2021-2022 B.Sc. Semester-V (General) (CBCS)

Name of Faculty Member	Topic(14 th September 2021 to 18 th January 2022)		Topic(14 th September 2021 to 18 th January 2022)
Sri. A. De Assistant Professor	DSE-1A: Linear Algebra Vector spaces, subspaces, algebra of subspaces, quotient spaces, linear combination of vectors, linear span, linear independence, basis and dimension, dimension of subspaces.	P U J A	DSC-2(G): Linear Algebra Linear transformations, null space, range, rank and nullity of a linear transformation, matrix representation of a linear transformation, algebra of linear transformations. Isomorphisms. Isomorphism theorems, invertibility and isomorphisms, change of coordinate matrix.
Sri. S. Roy Assistant Professor	SEC-3(G):Number Theory Division algorithm, Lame's theorem, linear Diophantine equation, fundamental theorem of arithmetic, prime counting function, statement of prime number theorem, Goldbach conjecture, binary and decimal representation of integers.	V C A T	SEC-3(G):Number Theory Linear congruences, complete set of residues.Number theoretic functions, sum and number of divisors, totally multiplicative functions, definition and properties of the Dirichlet product, the Mobius Inversion formula, the greatest integer function, Euler's phi-function.
		I O N	PTM(online)-2 nd week of December 2021 Internal Assessment: 2 nd week of December 2021 Students' Seminar(online)-2 nd week of January 2022

Academic Calendar for the Session 2021-2022 B.Sc. Semester-VI (General) (CBCS)

Name of the Faculty Members	Topics(From 21 st February 2022 to 10 th June 2022)		
Dr. S. Manna Associate Professor Head Of The Department	Introduction to linear programming problem. Theory of simplex method, graphical solution, convex sets, optimality and unboundedness, the simplex algorithm, simplex method in tableau format, introduction to artificial variables, Two-phase method. Big-M method and their comparison. Duality, formulation of the dual problem, primal-dual relationships, economic interpretation of the dual.		
Internal Assessment: 2 nd Week of May 2022 PTM(online)-2 nd Week of May 2022			